An Accurate Computation of Block Hybrid Method for Solving Stiff Ordinary Differential Equations
نویسنده
چکیده
In this paper, self-starting block hybrid method of order (5,5,5,5) is proposed for the solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on stiff ordinary differential equations, and the results obtained compared favorably with the exact solution. Keywords–Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
منابع مشابه
On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations
This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y′′′ fx, y, y′, y′′ , y α y , y′ α β , y′′ α η with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found ...
متن کاملHYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
متن کاملImplementation of four-point fully implicit block method for solving ordinary differential equations
This paper describes the development of a four-point fully implicit block method for solving first order ordinary differential equations (ODEs) using variable step size. This method will estimate the solutions of initial value problems (IVPs) at four points simultaneously. The method developed is suitable for the numerical integration of non-stiff and mildly stiff differential systems. The perf...
متن کاملImplicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation
In this paper, a self starting two step continuous block hybrid formulae (CBHF) with four Off-step points is developed using collocation and interpolation procedures. The CBHF is then used to produce multiple numerical integrators which are of uniform order and are assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for t...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کامل